
Surviving Client/Server:
InterBase Or SQL Server?
by Steve Troxell

All Delphi developers have had
the opportunity to work first

hand with at least one SQL server
backend: Local InterBase Server.
For many of you, this is your first
look at a client/server system.
Also, as I’ve stated many times in
the course of this column, func-
tionality of client/server systems
varies widely from vendor to
vendor. For these reasons, this
month I want to take a close look at
InterBase (which should be good
common ground for everybody)
and Microsoft SQL Server (because
it’s the only other client/server
RDBMS I have direct experience
with!) in order to illustrate just how
different two seemingly similar
products can be once you look
under the hood.

This is not an exhaustive com-
parison by any means. We will fo-
cus primarily on the features
having the greatest impact on day
to day development. The basis of
our comparison will be InterBase
Workgroup Server v4.0 and SQL
Server v6.0. At the time of writing,
SQL Server v6.5 has just been re-
leased and the next InterBase is
under development.

ANSI SQL92 Conformance
Despite the fact that SQL is a sup-
posedly “standardized” language,
in reality it’s about as portable
from vendor to vendor as C. Con-
cepts such as indexes, triggers, and
stored procedures are not even
included in the SQL 92 standard. In
actuality, the standard can be im-
plemented at three levels: entry,
intermediates and full. Each level
builds upon the previous levels
and adds functionality. As such,
vendors’ claims of conformance to
any SQL standard should not be
taken too seriously.

Neither InterBase nor SQL Server
conform to the SQL 92 standard at
the full level. They both really only

conform at the entry level, with bits
and pieces of the higher levels
thrown in (along with some ven-
dor-specific enhancements as
well). Let’s take a look at the major
areas where InterBase and SQL
Server differ. Features indicated
below by (SQL92) are part of the
higher levels of the SQL 92 stand-
ard, other features are vendor
enhancements.

Domains (SQL92) Both prod-
ucts support domains. These are
just user-defined data types for col-
umn definitions in tables. However,
SQL Server allows domains to be
used with stored procedure pa-
rameters and local variables
whereas InterBase restricts them
to table column definitions only.

Flow Control Both products
provide simple flow control state-
ments such as IF THEN ELSE branch-
ing, WHILE loops and exits from the
middle of a stored procedure.
InterBase’s flow control state-
ments are only valid within the
body of a stored procedure or trig-
ger definition. SQL Server’s flow
control statements can also be
used within script files. For exam-
ple, a script that creates a stored
procedure could check to see if the
stored procedure already existed
and drop it before the CREATE
PROCEDURE statement is run. This
allows the same script file to create
new procedures or update existing
ones. Without flow control, the
CREATE PROCEDURE statement would
produce an error if the procedure
already existed, and the DROP
PROCEDURE statement would pro-
duce an error if the procedure did
not exist. With InterBase you
would have to switch between the
CREATE PROCEDURE and ALTER
PROCEDURE statements, so no single
script would work for both creating
and updating the same procedure.

Cursors (SQL92) Declared cur-
sors allow you to navigate

forwards through a result set with
SQL and are available in both
InterBase and SQL Server. These
can be either read-only or modifi-
able. SQL Server cursors can also
be scrollable (you can move back-
wards, to first, to last, or jump to a
specific row in the cursor) and can
be made sensitive or insensitive to
changes made by other users to
the underlying rows.

Datatypes Both servers sup-
port most of the standard SQL 92
datatypes: CHAR, VARCHAR, INTEGER,
DATETIME, SMALLINT, FLOAT and
REAL. SQL Server extends the avail-
able datatypes to include TINYINT
(one byte unsigned integers),
BINARY and VARBINARY (hexadecimal
strings), MONEY and SMALLMONEY (spe-
cial instances of the numeric
datatype with currency related dis-
play formatting), BIT (binary on-off
value), and TIMESTAMP (special
auto-incrementing value used for
optimistic locking schemes).

Arrays InterBase tables can
include arrays wherein any column
can be designated as an array of up
to 16 dimensions of any single data
type. Individual array elements, or
array slices, can be accessed
though SQL statements. However,
referencing such structures
through third-party tools or even a
Delphi program is problematic at
best. SQL Server does not support
array structures.

BLOB Support (SQL92) SQL
Server supports BLOB data fields
through separate TEXT and IMAGE
datatypes. However, it allocates
these fields in fixed 2048 byte incre-
ments. InterBase supports both
text and binary BLOB fields
through a single datatype called
BLOB and gives you explicit control
over the disk allocation of the field.

InterBase also provides BLOB
filters which are DLL functions you
write and link into InterBase
(except for Novell servers). With

22 The Delphi Magazine Issue 11

these filters you can perform tasks
such as converting a bitmap from
the application into a JPEG com-
pressed image in the database and
vice-versa. SQL Server does not
provide BLOB filters.

Temporary Tables (SQL92) A
temporary table can be created
such that it is invisible to other
users and hence there would be no
chance of collision if other users
happen to use a temporary table
with the same name. Alternatively,
temporary tables can be made vis-
ible to other users to share data. In
either case, temporary tables auto-
matically drop themselves at the
end of the process or session.

SQL Server supports temporary
tables, although not with the SQL
statements specified by the SQL92
standard. InterBase does not
support temporary tables at all.

While the CREATE TABLE state-
ment can be used to create tempo-
rary tables, SQL Server provides a
convenient shortcut with the
SELECT statement. Figure 1 shows
how you can add the INTO clause to
a SELECT query and have the server
automatically create a temporary
table containing the result set of
the query. This results in a tempo-
rary table named #TempTable con-
taining three columns: Address,
City and State. Other users can
also have temporary tables named
#TempTable (of completely different
structures if desired) without fear
of colliding with each other.

Within SQL Server, temporary
tables are stored in a special data-
base called TempDB. This includes
temporary work tables created
during the server’s normal course
of processing queries. SQL Server
allows you the option of storing the
TempDB database within server
RAM, greatly improving perform-
ance of these activities.

Functions (SQL92) When it
comes to providing built in func-
tions to assist the SQL developer,
InterBase pales in comparison to
SQL Server. InterBase provides a
paltry 8 built-in functions, while
SQL Server provides more than 75.
Some of the more interesting addi-
tions to SQL Server’s library in-
clude the LOWER, LTRIM/RTRIM and
SUBSTRING string functions (part of

SQL 92) as well as functions to add
and subtract datetimes, extract
datetime portions (month, day,
year, hour etc), a whole slew of
math functions, substring search-
ing (similar to POS in Delphi) and
functions to compute and compare
Soundex values.

User-Defined Functions Both
servers provide the ability to intro-
duce user-defined functions into
the SQL language. Within InterBase
(except for Novell servers), you
can import a function from a DLL
and use it as you would any other
system-supplied function in the
SQL context. The function can have
zero or more input values and can
return one output value of any type
as the function result. This capabil-
ity allows users to overcome the
spartan built-in function library,
but you have to write the functions
yourself.

SQL Server provides a similar ca-
pability through extended stored
procedures. Here a stored proce-
dure call can be made to an exter-
nal DLL procedure. The interface
to SQL is just like any other stored
procedure call. While this is not as
clean as the true function interface
of InterBase, it does allow for mul-
tiple output parameters in the
stored procedure argument list
and for returning multi-row result
sets. Some extended stored proce-
dures that are provided by SQL
Server allow you to execute any
Windows NT command string (re-
turning any output as rows of text),
as well as send and read e-mail
through the SQL Server mailbox.

Alerts
InterBase triggers or stored proce-
dures can raise user-defined “event
alerters” which then notify other
applications that have registered
their interest in the alert with the
InterBase server. This is a simple
notification message; no data can
be transmitted to or from the lis-
tening clients.

SQL Server does not offer built-in
support for inter-application com-
munication like this. However, it
does have an alert manager which
can monitor the NT event log look-
ing for any particular event (which
can be fired from an SQL query).

The alert manager can also be tied
into the NT Performance Monitor
to trigger an alert when a selected
performance threshold is crossed.
However, the only thing the alert
manager can do in response to the
event is to send an e-mail, a pager
notification, or execute a task such
as an SQL script file or NT program.

Triggers
InterBase provides more flexible
trigger support than SQL Server.
Both servers provide the standard
abilities to bind triggers to insert,
update, and delete operations on a
table. InterBase allows you to have
multiple triggers bound to the
same event and table; all firing in a
specified sequence. One advantage
to having separate triggers for dis-
tinct tasks on the same operation
is that it is easier add and remove
individual tasks than to modify the
trigger code if it were all in one
place.

InterBase also allows triggers to
be bound either before or after the
data operation occurs. For exam-
ple, you can have a trigger on a
table firing before an update that
validates the field contents prior to
changing the row in the table. You
can also have another trigger on
the same table firing after an
update that adds a row into a dif-
ferent table, possibly a change
history table.

SQL Server only allows one
trigger per table per operation (in-
sert, update and delete) and they
fire after the operation has been
applied to the table. However, al-
though the table is modified before
the trigger fires, if an error is raised
within the trigger the table change
can be rolled back.

InterBase also has a more con-
venient syntax for examining and
modifying columns within a trig-
ger. InterBase provides two con-
text variables called Old and New
that contain the columns of the
affected row before and after the

SELECT Address, City, State
 INTO #TempTable
 FROM Authors

➤ Figure 1: Temporary tables
in SQL Server

24 The Delphi Magazine Issue 11

change (Old is not available for in-
serts, New is not available for de-
letes). You can manipulate the row
contents by directly examining or
modifying these context variables.
Figure 2 illustrates how this is done
in InterBase.

SQL Server provides two virtual
tables, Deleted and Inserted, that
serve the same function as
InterBase’s Old and New variables.
However, because these are actu-
ally tables, you must use regular
SQL statements to manipulate
them. What this means is that you
have to issue SELECT and UPDATE
statements to read or change col-
umn contents. Figure 3 shows how
this is done with SQL Server. Since
the rows have already been added
to the table, we use an UPDATE state-
ment to modify the affected rows
by joining with the Inserted table.

Another difference between the
two concerns when a given SQL
statement affects more than one
row (for example, an UPDATE with a
WHERE clause for all the employees
within one department). In this
case, an InterBase trigger fires
once per row affected, an SQL
Server trigger fires once per set
affected. This makes SQL Server
triggers a bit tough to work with:
you must allow for the possibility
that the Inserted and Deleted
tables may contain more than one
row. Notice the UPDATE statement in
Figure 3: because of the join in the
WHERE clause, this will modify all
rows that exist in the Inserted
table.

Stored Procedures
Procedures that do not produce
result sets (ones that simply add or
change data or return simple out-
put parameters) are handled sub-
stantially the same way by both
vendors, although there is a slight
difference in the calling convention
for output parameters.

Stored procedures returning
results are significantly different.
With InterBase, each column to be
returned must be declared as a
separate output parameter passed
back by the stored procedure. As
would be expected, within the
body of the procedure each output
parameter must be explicitly set

with the corresponding column
value. Figure 4 shows an example
of such a stored procedure.

In contrast, SQL Server allows for
“implicit result sets” from stored
procedures. In this case, no output
parameters are necessary to pass
back column values: the stored
procedure itself has the result set
implicitly bound to it. The stored
procedure behaves transparently,
there is no difference in the output
of the stored procedure than if the
underlying SQL queries were sent
standalone. Figure 5 shows the
equivalent SQL Server stored pro-
cedure for the InterBase version
shown in Figure 4.

Not only does the InterBase con-
vention negate the use of returning

all columns of a table with SELECT *
FROM, it involves an additional layer
of stored procedure maintenance
by requiring much more code in
terms of parameters and mecha-
nisms to populate those parame-
ters. However, although SQL 92
does not cover stored procedure,
they are planned to be introduced
in the next standard currently un-
der development (SQL3). InterBase
conforms more to the proposed
standard than does SQL Server. We
covered this issue in more detail in
the March 1996 Issue (No 7).

Other differences include how
transaction control is handled
through stored procedures.
InterBase does not allow transac-
tion control statements (START

CREATE TRIGGER OnEmployeeInsert FOR Employee
 BEFORE INSERT
AS
BEGIN
 /* Set the DateEntered field to the current date */
 New.DateEntered = Today;
END

➤ Figure 2: InterBase trigger

CREATE TRIGGER OnEmployeeInsert ON Employee
 FOR INSERT
AS
BEGIN
 /* Set the DateEntered field to the current date */
 UPDATE Employee SET DateEntered = GetDate()
 FROM Inserted
 WHERE Emp_No = Inserted.Emp_No
END

➤ Figure 3: SQL Server trigger

CREATE PROCEDURE Get_Employees_ByDept(Dept char(3))
RETURNS(Emp_No smallint, First_Name varchar(15),
 Last_Name varchar(20), Phone_Ext varchar(4))
AS
BEGIN
 FOR
 SELECT Emp_No, First_Name, Last_Name, Phone_Ext
 FROM Employee
 WHERE Dept_No = :Dept
 INTO :Emp_No, :First_Name, :Last_Name, :Phone_Ext
 DO SUSPEND;
END

➤ Figure 4: InterBase stored procedure

CREATE PROCEDURE Get_Employees_ByDept(@Dept char(3))
AS
BEGIN
 SELECT Emp_No, First_Name, Last_Name, Phone_Ext
 FROM Employee
 WHERE Dept_No = @Dept
END

➤ Figure 5: SQL Server stored procedure

July 1996 The Delphi Magazine 25

TRANSACTION, COMMIT or ROLLBACK)
within stored procedures, the
transaction must be handled by
the calling application. However,
any exception or error raised
within the transaction will auto-
matically cause a rollback of the
entire transaction. With SQL
Server, transaction control state-
ments can appear anywhere
(within the calling application or
within a stored procedure) and
transactions can be nested. This
gives you greater flexibility in
encapsulating code within stored
procedures.

Finally, there are significant dif-
ferences in error handling capabili-
ties within stored procedures.
With SQL Server, the error han-
dling mechanism is the RAISERROR
statement, which will send a user-
defined message back to the client.
The message may be defined in
code, or may be defined in a lookup
table and referenced by number.
RAISERROR also provides the con-
venience of substitution parame-
ters to allow you to insert text
relevant to the specific instance of
the error (see Figure 6). If used
within a stored procedure or trig-

ger, RAISERROR does not in and of
itself end execution of the code,
you must explicitly call RETURN.
While this is a bit clunky, it does
give you a means of placing debug-
ging statements within stored
procedures. You can also use
RAISERROR to post messages in the
NT event log (which would not nec-
essarily be an action you would
want to terminate execution of the
code).

In InterBase, the text of an excep-
tion message is statically defined
and bound to a name. You then
raise the exception in a block of
code (usually within a stored pro-
cedure): see Figure 7. Unlike SQL
Server, the mere act of raising the
exception terminates the block of
code and returns to the caller.
However, within stored proce-
dures InterBase provides struc-
tured exception handling similar to
the Try-Except block in Delphi.
When an exception is raised (or an
SQL statement produces an error),
execution of the begin-end block is
terminated and any actions per-
formed within it are rolled back. It
then looks for a when-do statement
to handle the error. Figure 8 shows

how you can trap the native SQL
error produced when attempting
to add a record with a duplicate
primary key and return your own
message in place of the default
server message.

Begin-end blocks can be nested,
each having when-do error handlers
for specific errors. If an inner block
produces an error, InterBase pro-
gresses through the levels until it
finds a matching when-do handler
for that error – just like Delphi’s
multiple levels of Try-Except
blocks.

Integration With Delphi
InterBase works quite well with
Delphi, which is not surprising
since they both come from the
same company. However, there is
no direct support in Delphi for ar-
ray structures and some configura-
tions of NUMERIC and DECIMAL fields
translate in Delphi as integers in-
stead of real numbers (truncating
the fractional part). Also, you can-
not use the TStoredProc component
for stored procedures returning
more than one row, you must use
SELECT * FROM <stored procedure>
in a TQuery.

The big problem with SQL Server
and SQL Links v2.51 (shipping with
Delphi 1) is that it only supports
SQL Server v4.21A and won’t di-
rectly support new features in ver-
sions 6.0 or 6.5. For the most part,
this can be overcome by encapsu-
lating v6.x-specific functions
within stored procedures. Stored
procedures called through
TStoredProc do not work when
connecting though ODBC because
of a change to the parameter
checking in SQL Server v6.0 (that
the BDE violates because it is only
designed for SQL Server v4.21A).
However, you can still call stored
procedures using straight SQL syn-
tax in a TQuery. Although I have not
had a chance to work with it at the
time of writing, SQL Links v3.01
(shipping with Delphi 2) supports
SQL Server v6.0, but messages on
the CompuServe fora indicate that
it is notoriously slow.

Development Tools
When comparing the development
tools provided with these two

CREATE EXCEPTION DupKey “Don’t enter something twice!”
...
BEGIN
 INSERT INTO Table1 VALUES (20, 512);
 WHEN SQLCODE -803 DO
 EXCEPTION DupKey;
END;

➤ Figure 8: InterBase’s structured exception handling

CREATE EXCEPTION NoEmployees “No employees found for this department.”;
...
DECLARE VARIABLE N INTEGER;
DECLARE VARIABLE Dept CHAR(3);
Dept = ’623’;
SELECT COUNT(*) INTO :N FROM Employee WHERE Dept_No = :Dept
IF (N = 0) THEN
 EXCEPTION NoEmployees;

➤ Figure 7: Basic InterBase error handling

DECLARE @N INT
DECLARE @Dept CHAR(3)
SELECT @Dept = ’623’
SELECT @N = COUNT(*) FROM Employee WHERE Dept_No = @Dept
IF @N = 0
BEGIN
 RAISERROR (’No employees found for department %s’, 16, -1, @Dept)
 RETURN /* RAISERROR doesn’t terminate by itself */
END

➤ Figure 6: SQL Server error handling

26 The Delphi Magazine Issue 11

products, SQL Server clearly wins
hands down. SQL Enterprise
Manager is your one-stop resource
for nearly all the development and
administration functionality need-
ed to manage as many concurrent
SQL Servers as you can access
from the workstation. This in-
cludes multiple servers on the LAN
and even remote servers accessi-
ble via modem through NT’s
Remote Access Services.

Enterprise Manager not only per-
forms SQL queries to manipulate
data or metadata, it allows you to
set up users and security, perform
backups and restores, and monitor
server connections, activity, and
locking for any server it has access
to. Tasks can be scheduled to exe-
cute automatically at certain inter-
vals. These can include any NT
application or SQL statement and
e-mail or pager notifications can be
sent to any user upon the success
or failure of any task.

All of the functions of the GUI
front end can also be performed as
SQL queries. SQL Server encapsu-
lates a great number (over 180
actually) of routine functions and
services within system-supplied
stored procedures (basically ex-
tending the SQL command set). For
example, adding or deleting users
or even changing a user’s pass-
word can all be performed through
SQL by calling system-supplied
stored procedures. This opens the
door for you to write and deploy
your own system administrator
application to seamlessly integrate
these functions in a turnkey
database system. InterBase does
not supply any SQL statements or
procedures to access its
administration functions.

The basic query writing features
of SQL Server include a fully scrol-
lable and resizable text editor for
writing any number of queries at
one time (the server can perform
multiple queries in one execution,
producing multiple result sets if
needed).

Separate query windows can be
opened for different servers and
each window can have multiple
query workspaces for the same or
different databases. The text editor
provides standard text file

load/save functions so handling
SQL script files is as easy as a click
on a load or save button. There is
no syntactical difference between
SQL code contained in a script file
and interactive SQL code.

Within any query window, you
can highlight any portion of the
code and execute only the high-
lighted code. This is a great aid to
development as you can have a
workspace with more than one
query and quickly run any of them
by simply highlighting and execut-
ing the one you want. As another
example, you could have a script
file containing several related
stored procedures, load it into the
query editor, change one of them,
and select only that one to execute
without having to execute the
entire script file.

The equivalent capabilities for
InterBase can be found in its
Windows ISQL and Server Manager
programs. Server Manager covers
the administration functions: back-
ups and restores, users, security,
etc. There is no facility to interac-
tively monitor server activity or
schedule automated tasks.

To execute SQL queries with
InterBase you use the Windows
ISQL program. You can only run
one query at a time in a tiny 1 inch
by 5 inches non-resizable edit
window. There is no provision for
multiple simultaneous query win-
dows or workspaces. However,
you can call up previously exe-
cuted queries through a Previous
button. Script files must be written
with an external editor and run
through ISQL separately. If you’re
debugging the script, you must
constantly switch back and forth
between ISQL and the editor.

Compounding this irritant, the
file open dialog used to load the
script file isn’t even smart enough
to remember the last directory you
loaded from. You cannot selec-
tively run portions of the script file
– it’s all or nothing. Because of the
need to redefine SQL terminator
characters in script files, the
syntax of a SQL query within a
script file isn’t quite the same as an
interactive SQL query.

Working with queries or scripts
between SQL Server and InterBase

is just a night and day difference in
ease of use. Here at TurboPower
we have had the opportunity to
work with both products and
consider productivity to be signifi-
cantly higher with SQL Server’s
tools than with InterBase’s. This is
strictly from the developer’s point
of view, before you even get into
the need for such tools at the data-
base administrator’s level. Delphi
2’s Database Explorer overcomes a
lot of the limitations of InterBase’s
Windows ISQL, but it won’t per-
form the administration tasks and
it won’t work with script files.

A significant difference in devel-
opment between these two prod-
ucts is the handling of changes to
table structures. InterBase’s ALTER
TABLE statement allows you to add
or drop any column from an exist-
ing table. If the new columns don’t
allow nulls, InterBase fills it with a
reasonable default value (zeros for
numeric columns, empty string for
character columns). This is ex-
tremely convenient for online
changes to tables (and begs for a
front end GUI tool to change table
structures). It allows structures to
be modified without losing existing
data, but problems may still arise
because the existing data won’t
have proper values in the newly
added columns.

SQL Server’s ALTER TABLE state-
ment only allows you to add col-
umns, and the columns you add
must allow nulls because SQL
Server makes no assumptions
about what data belongs in the new
column. To remove columns you
must drop the entire table and
recreate it from a script with the
columns omitted.

This is further complicated by
the fact that in order to drop a
table, you must first remove all for-
eign key references to it.
Obviously, you must then restore
the foreign key references after rec-
reating the table. The same issue
exists with InterBase, except it
provides better ways of working
around the problem. Because of
this, you may not want to physi-
cally define foreign key relation-
ships until well into the
development process when the
table structures have stabilized.

July 1996 The Delphi Magazine 27

Transportability
In developing a database, there
probably comes a time when you
need to move it somewhere. For
example, you may need to work on
the project at home, on a laptop, or
deliver it to another site for demo
purposes. With Interbase, this is
extremely easy: you just copy the
.GDB file to whatever machine
needs it. With SQL Server, it’s an-
other story entirely. The preferred
mechanism is the SQL Transfer
Manager program, which moves a
database (or parts of it) from one
database to another on the same or
different SQL Servers (through a
LAN or modem). Unfortunately,
Transfer Manager is a bit buggy.
For example, it usually refuses to
move triggers. Other than that, it
seems gets the job done but it de-
pends on there being a direct link
between the two machines.

A backup and restore operation
is more reliable, however there are
problems with that too when mov-
ing between two different SQL Serv-
ers. Because of how SQL Server
manages user lists, the user access
and permissions from your source
database won’t necessarily coin-
cide with the user list in the target
SQL Server. What this means is that
you usually have to go through
some manual steps or batch proc-
esses to keep the user lists in sync.

Locking Schemes
There is a drastic difference in how
these servers handle record lock-
ing. In SQL Server, the lowest
granularity of locking is the page
(2Kb). Record locking per se is not
possible: if a lock is imposed at
least the whole page containing the
row is locked (and consequently all
other rows on that page). However,
true record locking is supposed to
available with version 6.5.

Locks occur when reading or
modifying data. SELECT statements
will hold a lock until all the rows
selected have been read and re-
turned. This will not prevent other
users from reading the same rows,
but will prevent them from modify-
ing the rows (see the TTable
Revisited sidebar). While modify-
ing data, locks are placed that pre-
vent other users from modifying

the same pages and from reading
them. All this is done to ensure
consistency of data and that no
reads pick up a partially modified
(and therefore possibly inconsis-
tent) result set. The problem is that
because the locks are placed at the
page level, unrelated data may be
blocked as well.

InterBase employs a Multi-
Generational Versioning Engine
which I understand is an exclusive
in the industry. Contention is han-
dled by making separate copies of
affected rows in the database and
managing them for each user ma-
nipulating the same rows. This
ensures there is virtually no block-
ing of processes. There is still an
optimistic locking scheme such
that if user A changes a row and
user B tries to change the same
row, user B will get an error mes-
sage to the effect of “record has
been changed by another user”. So
although there are multiple copies
of the rows they are being managed
such that data is not lost by
multiple simultaneous changes.

Nothing is free, however. All
these extra copies of rows eventu-
ally become “dead” and must be
cleaned up. InterBase has a
“garbage collection” routine that
periodically goes through and dis-
cards these dead rows. It’s possi-
ble that this garbage collection
could put a noticeable drag on your
system when it occurs. You can
configure the interval at which this
happens, but it is based on transac-
tion load not clock time, so you
can’t force it to happen at a specific
time when the system is not in use.
You can disable the garbage collec-
tion altogether and perform it
manually through Server Manager.

Documentation
Both products provide manuals
covering administration, installa-
tion, SQL programming, API refer-
ences and tools. SQL Server’s
manual set is certainly a lot more
voluminous (by a factor of 2),
which is partly explained by its
much larger feature set and
administration capabilities.

While any evaluation of docu-
mentation quality is going to be
subjective at best, I have to say that

Microsoft does a much better job
in this department. Administration
tasks are self-contained within a
single task-oriented manual. Tasks
are laid out step by step with ample
screen shots, and every field,
switch, radio button and option is
meticulously documented. SQL
programming tasks are self-
contained in an alphabetical refer-
ence manual covering all SQL state-
ments and concepts, including
over 180 system-supplied stored
procedures. The text is very clear
and examples are abundant. The
examples usually reference the
supplied example database, so you
can experiment freely. SQL Server
also provides a Database Devel-
oper’s Companion which is an
excellent and comprehensive in-
troduction to client/server pro-
gramming and design issues.
Finally, the complete SQL Server
documentation set can be installed
to hard disk (or read from
CD-ROM) for online access.

InterBase’s documentation falls
a bit short in completeness and
organization. The Language Refer-
ence details the syntax and briefly
covers the usage of each SQL state-
ment, but you usually have to refer
to the Data Definition Guide for a
complete explanation (minus the
complete syntax). In the Data Defi-
nition Guide you’ll find information
about declaring arrays within your
tables, but you’ll have to turn to the
Programmer’s Guide to find out how
to move data between the array
and an application. There is lots of
example code, but it rarely refers
to the sample databases supplied
with InterBase. In a few cases the
usage defined in the text doesn’t
quite coincide with the usage in the
examples. There seems to be some
amount of duplication and disper-
sal of material between the manu-
als and you have to read them all to
get complete coverage of any one
topic. For example, complete infor-
mation about BLOB filters is
spread across three manuals.

Conclusion
There is much more to both of
these products than I have covered
here. My intention was to show
Delphi client/server developers

28 The Delphi Magazine Issue 11

who may only be familiar with one
platform just how diverse the
client/server world is. Both prod-
ucts have their strengths and
weaknesses and which one is right
for you will depend on what kind of
project you’re undertaking.

The table at the right summa-
rises the capacities of the two
systems. More detailed info can be
found on the World Wide Web at:

SQL Server:
 http://www.microsoft.com/sql

InterBase:
 http://www.borland.com/
 Product/DB/InterBase/
 ibasmain.html

Next month I plan to take a look at
the new database features in
Delphi 2.0 from a client/server
perspective.

Steve Troxell is a software engi-
neer with TurboPower Software
where he is developing Delphi
client/server applications for the
casino industry. Steve can be
contacted at stevet@tpower.com
or on CompuServe at 74071,2207

TTable Revisited
Back in the January issue, we talked about the usage of TTable in
client/server. Because with TTable you don’t have control over the
queries being used to fetch data from the server and because of the
locking scheme used by SQL Server (and most other servers besides
InterBase), a particularly nasty problem can arise. Let’s say you’re
using a TTable and a TDBGrid to provide a browser for a customer table.
When you open the TTable, an unrestricted SELECT statement is sent to
the server which selects all columns and all rows in the table. This will
place a lock on at least part of the table until the query is closed or
flushed (all rows are sent back to the client). This will block other users
from updating (but not reading) the locked part of the table. Because
SQL Server uses page-level locking, rows that aren’t even being directly
viewed by the browser could be locked. While part of this problem is
due to the architecture of the locking scheme, it is also due to the
architecture of TTable and browsers in general within a client/server
RDBMS.

InterBase v4.0 SQL Server v6.0

Rows per Table 2 billion Limited by table size

Columns per Table 16,000 250

Row Size (excl. BLOBs) 64Kb 1962

Size of Table Limited by resources 1Tb

Number of Databases Limited by resources 32,000

Number of Tables/DB 64,000 2 Billion

Number of Active Users Limited by resources 32,000

Memory per User 250Kb 40Kb

➤ Server capacities

	ANSI SQL92 Conformance
	Alerts
	Triggers
	Stored Procedures
	Integration With Delphi
	Development Tools
	Transportability
	Locking Schemes
	Documentation
	Conclusion
	TTable Revisited

